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Abstract-From the assumption that the dimensionless velocity profile in a turbulent incompressible 
boundary layer obeys the well-known universal profile it is shown that the boundary layer thickness, and 
the shear stress and eddy diffusivity variations through the thickness at any Reynolds number, may be 
derived. The resulting variations, expressed in dimensionless form, are shown to be only weakly de- 
pendent on Reynolds number. 

Using the additional assumption that the eddy diffusivities for momentum and heat are equal the 
energy equation is solved numerically to obtain the Stanton number variation with Reynolds number for 
several Prandtl numbers. Results are given for Prandtl numbers of 0.01, 0.1, 0.7, 1.0 and 10 for a 

number of different positions of a step temperature distribution on the flat plate. 

NOMENCLATURE 

temperature parameter defined by equa- 
tion (21); 
local coefficient of friction; 
constant as defined by equation (20); 
specific heat at constant pressure; 
local heat-transfer coefficient; 
thermal conductivity; 
unheated starting length; 
constant in Deissler profile; 
Prandtl number = Q/k; 
Reynolds number = usx/v; 
Reynolds number at distance I; 
Reynolds number at distance x; 
Spalding function (-St . Pr . u,; ); 
Stanton number; 
temperature; 
temperature at the wall; 
temperature in the free stream; 
temporal mean velocity in the x-direc- 
tion; 
free stream velocity; 
dimensionless velocity u/d(~/p); 
temporal mean velocity in the y-direc- 
tion; 
distance along the plate; 
dimensionless distance = 

x 

s 
1 

d!%iP). dx; 

V 

distance normal to the wall; 
dimensionless distance normal to the 

wa,, Y d(=Jlp). 
v ’ 

way+ ; 
step length in R; 
step length in y+; 
eddy diffusivity for heat; 
eddy diffusivity for momentum; 
variable used in von Mises transforma- 
tion ; 

t - lW 
dimensionless temperature t-_~; 

kinematic viscosity of f3uid;s 

W 

THIS article describes a solution to the energy 
equation when a fluid flows at constant velocity 

variable used in von Mises transforma- 
tion; 
fluid density; 
shear stress; 
shear stress at the wall; 
stream function. 

INTRODUCTION 

y+ at the edge of the velocity boundary 
layer where U+ = u,‘; 
thermal molecular diffusivity k/PC&; 

2+;; 
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parallel to a flat plate under conditions when 
there is turbulent incompressible boundary 
layer. The plate is considered to be at the stream 
temperature for a certain distance from the 
leading edge and then at a different temperature 
over the remainder. 

Owing to the limited knowledge concerning 
heat transport in turbulent flow near surfaces, 
solutions to this problem involve a high degree 
of empiricism. Earlier solutions or empirical 
correlations of experimental results were given 
by Rubesin [I], Scesa and Sauer [2], Owen 
and Ormerod [3], Furber [4], Reynolds, Kays 
and Kline [5] but these are all restricted to 
cases in which the Prandtl number is unity or 
near. More general solutions have appeared 
recently following a new approach due to 
Spalding [6] who also proposed a new form of 
the law of the wall [7] in which a single equation 
is used to describe the dimensionless velocity 
variation in the boundary layer. Kestin and 
Persen [8], Smith and Shah [9] and Kestin and 
Gardner [IO] have extended Spalding’s work 
and produced solutions to the problem for a 
wide range of Prandtl numbers. In these analyses 
however, the assumption is made that the thermal 
boundary layer is thin compared with the 
velocity boundary layer and this is justified only 
for certain Prandtl number ranges. If the 
Prandtl number be less than unity then it is 
possible for the temperature boundary layer to 
extend beyond the velocity boundary layer so 
that the analysis of [8, 9, IO] are restricted to 
Pr >, 1. 

A comprehensive survey of the state of know- 
ledge on this problem is presented by Kestin and 
Richardson [I I] but it appears that no solution is 
yet available for low Prandtl numbers and it is 
the object of this work to present a solution 
which is applicable to all values of this para- 
meter. 

MOMENTUM EQUATION 

The momentum and continuity equations for 
an incompressible turbulent boundary layer 
with zero pressure gradient and with the intro- 
duction of the eddy diffusivity for momentum 
cm may be written 

In (I) is included the shear stress definition 

Following the procedure suggested by Spalding 
[6], the von Mises transformation is used such 
that 

E =:,f’(.~) andf(x) is chosen equal to x 

7 -,f(#) andf’(#) is chosen equal to II,. 

Then 

and similarly for the y derivative. 
It is easily shown that 

and with 

we obtain 

(3) 

We introduce the dimensionless 
ym at this point and obtain 

RIL 

We now assume, on the basis 
evidence, that u+ is a function 

of experimental 
of y+ only in a 

turbulent boundary layer, i.e. that there is 
a fixed functional relationship termed the “law 
of the wall”. Thus we may write 

variables U’ and 
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This may be substituted in (3) to give 

au 1 a7 
-= 
t3X v.p.u+ ’ ay+ 

The dimensionless variable R(=zw/v) is now 
introduced and us is taken constant. 

Hence 

a u+ 1 &r 
‘: a U$ (-)- pu+ay+ 

Expanding this expression and remembering 
that (h+/aR) = 0 

Integrating from 0 --f y+ gives 

Y+ 

s du,t- 
- (U+)2dR.dy+ =Tew?! 

0 

Also (du,+/dR) is not a function of y+ thus 

Yf 

du,+ 
- JR 

s 
(~+)a dyf = ; - 1 

0 

At 

so that 

y=y-t 7=() 
8 3 

and 

du,f 1 
dR ?‘+ 

/, (u+)~ dy+ 

_ = 1 _I(u+)~ dy+ 
7 

Tw Yf 

; (u+Y dy+ 

(4) 

(5) 

Equations (4) and (5) may be used to determine 
the Reynolds number -u,+ relation if the law of 
the wall be known and the variation of shear 
stress at any particular value of the Reynolds 
number. 

The eddy diffusivity for momentum variation 
follows from (5) since 

7 au 
j = (v + Em) ay 

and 

Thus 

au au 

aY 
u -~- 

all, 

rt,, du+ 
= 

pv * I$+ 

or 

7 v+ l ,du+ 
-= ___ -_ 
Tw V W 

Gn 1 T dy+ 

--(- vy; y; ~w ’ du+ 
1 (6) 

Equation (6) in conjunction with (5) gives the 
variation of eddy diffusivity through the boun- 
dary layer for any particular value of y,t (or R). 
This is a major step in the analysis since the 
assumption will be made that the eddy dif- 
fusivity for momentum is equal to that for heat. 

Before proceeding to calculations involving 
particular forms of the “law of the wall” we 
re-form (4) as 

or 

Re - RI = J [ j- (u+)~ dy+] du;- 
y.,+ 0 

(7) 

LAWS OF THE WALL 

A number of expressions have been proposed 
to fit the u+ - y+ relationship which, from 
experiments, appears to have a fixed shape 
independent of Reynolds number. These are 
well reviewed in [7]. In this analysis two proposed 
forms are used and compared, namely, that due 
to Deissler [12] and that due to Spalding [7]. 

(a) Deissler’s law 
Two separate expressions were put forward 

by Deissler which cover different ranges of y+ 

duf 
O<y+<26 ~- = 

dy+ 
1 

1 + 0.0154 u+y+ [l - exp (-0*0154 u+y+j 

(8) 
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Jy-y-jy ---- SpaMIng 

- De~ssler I i 

FIG. 1. The Deissler and Spalding forms of the “law of the wall”. 

y+ > 26 u+ = 

O&l, ‘2 + 12.8426 
i 1 

(This calculation and all subsequent were per- 

(9) 
formed on the Manchester University Atlas 
Computer.) The remainder of the integral can 
be performed analytically to yield 

Figure 1 shows this relationship diagrammatically. 
Since the expressions cover different ranges, 

1,, 

the integration necessary must be carried out in 
[ (u+)~ dy’ -~ 7.71606 y+ (in y+)e 
it 

two stages. We shall restrict the solution to t 5.63636~’ lny’ I- 8.74536yt ~- 583.962 
values of Reynolds number where yd > 26 but 
we shall assume that the law is obeyed from the 

(10) 

leading edge position. This cannot be true, of We may now determine a R y,; relation using 
course, since there is an initial laminar zone (7). 
but the previous analyses of this type have shown Rewriting (7) as 
this assumption to give good results. I’.%+ y.+ 

We first consider 7 (~+)a dy+ needed in 
Rz - RI = J [S(u+)" dy']g .dyj- 

Y-l+ 0 s 
0 

equations (4) and (5). 
For values of y81 > 26, (du;~/dy,f) is simply ob- 
tained as (1/0*36y,i ) from (9) and we obtain 

Y* 26 2” 

-I; @+I2 dv + = ! (u~‘)~ W + j-; W dy’ 
Ru - RY; -2~ = 21.4335 yj (in yJ )a 

-- 27.2105 yJ (my,‘) - 1622.13 lny; 
“F 

Using equation (8) the value of J” (~+)a dyi- + 51.5032 y; + 335.426 
0 

obtained by Runge-Kutta integration is 2250.47. 
R,; = 26 is the Reynolds number corresponding 
to yi = 26 and if the profile is assumed to apply 
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from the leading edge this can be computed and from the above with (5) and (6) the shear 
using equation (8) stress and eddy diffusivity variations may be 

up*+ 26 
computed. 

Rss = j [ ;f (~1’)~ dy+] dud 
0 Po~ynomia~~tting to R - yl‘ and R - u,’ 

The value of this integral was computed to be 
4759.44. Hence we obtain 

R,; = 21.4335 yi (In Y,+)~ - 27.2105 yJ ln y,i~ 

- 1622.13 In y,‘- + 515032~2 + 5094.86 

(11) 

The shear stress variation is obtained by sub- 
stituting equation (IO) into equation (5) and the 
eddy diffusivity variation then follows from 

en _._ r= 
vy;‘. 

0.36s _il _ _L 
s 7u.J Y,’ 1 

(12) 

(b) ~pa~ding~s law 
Spalding gives a form of the law of the wall 

which is a single equation and it is therefore 
more convenient for computation. It has the 
following form 

y+ I- U+ + 0.1108 
i 

exp (0.4 u+) - 1 - O-4 U+ - 

(0.4 z&+)2 (0.4 u’)3 (0.4 u+>4 

2! 3! 4! 1 
(13) 

Figure 1 shows this expression for comparison 
with Deissler’s form. By similar arguments to 
the above we obtain 

relations 

As will be seen, in solving the energy equation 
it is necessary to have explicit relation for y,f in 
terms of R in the case of Deissler’s form and us- 
in terms of R in the case of Spalding’s form. 

Sixth degree polynomial equations were fitted 
to equations (11) and (14) in the following 
forms. 

(a) Deissler’s profile 

Inyz =a~z6+a~z5+a3z4+a~z3 

+ 6752’ + ff6z f a7 (15) 

(b) Spalding’s pro$le 

In u + = al z6 + a2 * 25 + a3 I? -t_ aq z3 

+ a522 -t atiz + a7 (16) 

where Z = In . R in each case. 
Table 1 gives the values of the constants al to 

~27. By re-calculating these relations at known 
points the accuracy was found to lie between 
-0.032 and 0.0175 per cent for (15) and between 
-0.014 and 0,017 per cent for (16)). 

R - x+ relations 

Spalding [6] also introduced a new variable x+ 
and in his analysis showed that solutions to the 
energy equation may be obtained using this 

‘i &+)2 dy+ = (!!;)! + 0.4 x 0.1108 
i 

(~~e~~‘4 “+) - (0&Z uf exp (0.4 u+) -t- 

2 2 -. 
(0*4)3 exp (o*4 U+) 

(u+)3 0.4 (u+)4 _ ___--- (O*4)2 (u+)5 _ (O*4)3 (g+Y -- 
3 4 10 36 (0*4)3 

dy+ II_ = 1 + O-4 x 0.1108 
(0.4 .+>s (0.4 Uf)3 

- - - - -I_ 
du+ exp (O-4 u+) 1 0.4 U+ -F 3! 

“%; 0.4 =(g + 0.4 x 0.1108 (u:)~ exp ZJ,’ 
(O-4)2 

6 (u I~)4 0.4 (u+)5 (O*4)2 (u+Y (0.4Y WY --B ..-.-8- 2Q (04)4 exp (0.4 u,‘) - 8 12 _ 20 __ 60 _ 252 _ _ (O-4)3 (0.4yy 6_.‘\, (141 
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Table 1. Polynomial coefficients 

Deissler’s law Spalding’s law 

aI -2.3358264 x lOm8 --2.09921034 ‘. 10 7 
a, 2.06615471 x 1O-4 2.049576 v IO S 

a, ---7.52824874 2’ 10m3 -m8.32415543 ,’ IO-” 

a4 0.143990399 1.80627466 1_ IO-” 

a, - 1.50727603 --0.223655719 

a6 8.78858606 160164079 

a7 -- 19.9065732 -m2.45374632 

variable in such a way that a universal curve is 
obtained, irrespective of the unheated starting 
length, when plotted against this parameter. His 
analysis however included the assumption that 
shear stress variations could be neglected and it 
would not be expected that his suggestion will 
apply when shear stress variation is included. 
However, for comparison purposes, the R -- x+ 
relation was calculated. 

By definition 

or 

(17) 

From the already determined R - usi relations 
it is possible to calculate xf for different values 
of the Reynolds number at which the dis- 
continuity in temperature occurs for both 
Deissler’s and Spalding’s form. 

Results of momentum solutions 

Before proceeding further it may be helpful if 
the results obtained so far are discussed. Figures 
2 and 3 show R - ui~ and R - y;+ [equations 

/Y .___.~__ 

/’ 
lo*. ’ 

14 16 18 20 22 26 26 30 32 34 

FIG. 2. Reynolds number-u, + relations (Deissler’s and Spalding’s laws). 
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G 

IO 102 IO’ Iti 

c+ 
FIG. 3. Reynolds number--y; relations (Deissler’s and Spalding’s laws). 

IO5 

0.01 

0.001 

104 105 106 IO’ 

I‘? 

FIG. 4. Reynolds number-friction factor relations (Deissler’s and Spalding’s laws). 

(11) and (14)] for both relationships. The and Fig. 4 shows the resulting variation of Cf 
polynomial approximations are used to generate with R. The Prandtl-Schlichting relation agrees 
these shapes in the energy solution, It is easily very closely, tending towards the Deissler curve 
shown that for R lo4 to 10s and to the Spalding curve for 

Cf = 2/(U,t)2 R 10s. 
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\I 
FIG. 5. Shear stress variation (Deissler’s law). 

0 0.4 0.6 0.8 

Y’ 

-7 
5 

FIG. 6. Shear stress variation (Spalding’s law). 

Figures 5 and 6 show shear stress variations 
derived from equation (5) and the difference 
between the two forms of the law of the wall is 
extremely small. Figures 7 and 8 show the 
corresponding eddy diffusivity variation from 
equation (6). These curves are the main object 
of the momentum solution since they enable us to 
proceed to the energy equation solution if the 
assumption Eh = Ed is made. There is little 

variation in these curves with R but in the energy 
solution the exact equations were used. It is 
worth noting that the maximum E,~ is some I2 
per cent higher for Spalding’s form than for 
Deissler’s form. Finally Fig. 9 shows the varia- 
tion of s i with R and for both cases the curves 
are indistinguishable. 

Gwgy ~~t~uf~~n ~~~~fi~tl 

The basic energy equation for a turbulent 
incompressible boundary layer is written as 

By using the same transformation as before we 
may arrive at 

and the solution to 
object of the work. 
on this equation are 

0 = I all 

H-O at 

this equation is the main 
The boundary conditions 

The solution was carried out by a finite 
difference method similar to the well-known 
Schmidt method. In order to provide for the 
steep slope of the U+ - y+ relation near the wall 
it is necessary to use very small steps of Ay” 
which implies very small steps of AR. In order to 
speed up the calculation to achieve useful 
results over a wide range of R, it was carried out 
in two parts in the following manner: 

(1) For the region close to the temperature 
discontinuity, steps of Ay+ = 2 were used. 
This was carried on for a moderately small 
increase of R and then discontinued. 

(2) A simplifying assumption was made, 
namely, that the heat capacities of the 
layers up to y’ = 26 for Deissler’s form 
and up to yi- = 10 for Spalding’s form 
are negligible, i.e. in these thin layers a 
“steady-state” solution was used. This 
permitted much larger steps in Ay+ and 
hence in AR. 
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FIG. 7. Eddy diffusivity for momentum variation (Dcissler’s law). 

In these parts this assumption implies 

Hence 

0 

where y+ = 26 or 10 according to the law of the 
wall. 

NowB=Owheny+=OthusK=O 
and 

@y.‘=&j 
C = 26--- (Deisslet’s form) 

i W) dP 

The value of C along the layer y+ = 25 varies 
with R. Its initial value may be found at the 
position of the jump step since at this point 
0 = 1 at y+ = 26. 

Thus 
1 

C$ = gg-- (20) 
l WS) dv ‘- 

The value of C can now be calculated for 
subsequent steps in AR from 

c = 83/+=26. c,: (211 

The values of Cg are given in Table 2, 
The two solutions were observed to merge 

after a short increment in R and this was 
assumed to justify the assumption (2). 
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FIG. 8. Eddy diffusivity for momentum variation (Spalding’s law). 

Table 2. Values of Cl required for energy equation solution 
assuming a steady-state soIution near the wall 

Ci 
Pr Deisslert Spalding: 

0.01 3.91940 10~01.543 
0.10 0.450507 1.0188165 
0.70 0.099380 0.1560326 
1.00 0.077860 0.11246108 

1OGO 0.016886 0~01589504 

t Steady-state solution up to y + = 26. L 
$ Steady-state solution up to y+ = 10. 

Fitzite difSerence scheme 
When converted into finite difference form 

equation (19) becomes 

@(i ~-1) 
AR 

ui' uj (Ay+)z 
(22) 

See Fig. 10(a). 
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FIG. 9. Reynolds number-x+ variation (Deissler’s and Spalding’s laws). 

(4 

4 
4 

+ 

a’ 
02 t 

4 

--L_______L e 
_hL____~?*L___._ 

I t 

8, AY+ 
w 

(b) 
FIG. 10. Finite difference meshes. 

For assumption (I) this applies to all points ever, in these cases a special treatment of the 
including the surface (i = 1). For assumption surface is necessary since 81 is not constant with 
(2) the solution is taken out from the layer R at these positions. 
y+ = 26 (Deissler) or y+ = 10 (Spalding) and Making the assumption B:,,, - 01.25 + 8; - 01 
these were chosen as the i = 1 position. How- the energy equation becomes 
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See Fig. IO(b). 
Whether assumption (2) was made or not the 

stability limit occurred in the region of maximum 
/3, so that the step length AR must be limited by 

(24) 

The programme was arranged to determine the 
maximum value of this parameter for every step 
and it adjusted the next step AR accordingly 
with some safety margin. Figure 11 shows the 
maximum values of (,%/u~~u~ ) (the important 
part of the stability number) plotted against 
yJ_ and it will be seen that low Prandtl numbers 
impose a more severe stability criterion on the 
numerical process. 

The Stanton number is easily shown to be 

The slope at the wall was obtained from a five 
point differentiation formula when assumption 
(I) was used. 

When assumption (2) was used (M/tiy-l),l o 
becomes C. Pr thus St ~-~ C/U,~ in this cast. 
The Spalding number (isO/i'y I,)~ 1. (1 nlay also bc 
obtained. 

RESULTS AND CONCLUSlONS 

The solution was obtained for five Prandtl 
numbers (0.01, 0.1, 0.7, 1 and 10) and for four 
positions of the jump step (at y; =- 46, 1026, 
2026, 10026). These positions were chosen 
arbitrarily but it was slightly simpler to choose 
these rather than R for Deissler’s profile. How- 
ever, the corresponding values of R were chosen 
for the Spalding profile to make the results com- 
parable (these are 1.091 x 104, 9.103 x 105, 
2.195 x 106, 1.623 x 107). 

The results in the form St versus R are shown 
in Figs. 12 and 13. The differences in St between 
the two profiles are quite small except in the 
region of high Reynolds number where the 
values given by Spalding’s form lie higher than 
those given by Deissler’s law (at R ; 10s and 
for Pr _ 0.7 the difference is of the order of 
25 per cent). Nevertheless the reasonably close 

4ow 6030 8000 

v,’ 

FIG 11. Variation of the maximum stability parameter with ys i and Prandtl number. 
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FIG. 12. Reynolds number-Stanton number variation for different positions of the jump step 
in temperature for Deissler’s form of the law of the wall. 

agreement gives confidence in the accuracy of the 
numerical procedures. 

The influence of the different starting position 
is clearly shown, the Stanton number falling 
eventually on to a common curve. For high 
Prandtl numbers this convergence is very rapid. 
A number of suggested empirical correlations 
(see for example [5]> were tried in an attempt to 
bring these results on to a single curve for all 
Prandtl numbers but none was satisfactory. 

The assumption that %/Em = 1 has been 
shown recently to be incorrect for flow in pipes 
and, although there exists no data on this ratio 
in turbulent boundary layers, similar effects are 
no doubt present. For this reason the results 
of Figs. 12 and 13 must be considered doubtful, 
particularly at low Prandtl numbers. If reliable 
data on the eddy diffusivity ratio becomes avail- 

able it would be straightforward to include it 
in the general method. 

Figure 14 shows the results in the form of 
Sp - x+. The important feature here is that for 
Pr 3 O-7 the curves for different starting lengths 
are indistinguishable showing that the influence 
of including the variation of shear stress is 
negligible. For Prandtl number O-1 and 0.01 
however the effect becomes noticeable and a 
single curve does not correlate the effect of 
different starting Iengths. 

Table 3 gives some numerical values of the 
Spalding number, together with those calculated 
by Kestin and Gardner [lo] and Smith and 
Shah [9] and it will be seen that these compare 
closely. The present values were interpolated to 
only four significant figures since the inclusion 
of the shear stress variation causes differences 
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IT 

Reynolds No. 

FIG. 13. Reynolds number-Stanton number variation for different positions of the jump step 
in temperature for Spalding’s form of the law of the wall. 

i .l.ll II i _ 

'-----Gardner and Kestin 

i 
(for Spalding profIle> __ ,_ . 

14. Variation of Spalding’s function with x* (showing that the different starting positions 
do not correlate onto a single curve at low Prandtl number). 

FIG. 1 
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Table 3. Values of the Spalding function obtained in this 
analysis by other authors 

s + 

For Pr 0.1 
102 
10s 
104 
105 
106 

For Pr 1 
102 
103 
10” 
105 
106 

Present Gardnert Smith 
analysis and Kestin and Shah 

(Deissler’s (Spalding’s (Spalding’s 
law) law) law) 

0.1040 0.10720 0.125829 
0.0600 0.06248 0~0680106 
0+)405 0.04428 0.045754 
0.0330 0.03407 0.034666 
0.0290 0.02731 0.027762 

0.1250 0.1200 0.14177 
0.0700 0.07151 0.07728 
0.0505 0.05288 0.054413 
0.0420 0.04205 0.04293 1 
0.0373 0.03456 0.035321 

t Gardner and Kestin’s results are for Pr 0.71 and 1. 

in the X+ values with different starting lengths if 
the numbers are calculated to higher precision. 

In general one may conclude that for Prandtl 
numbers greater than 0.7 the results of this 
calculation confirm those of previous workers. 
For values less than 0.7 where no previous in- 
formation is available, it would be easily possible 
by cross-plotting from Fig. 12 to obtain good 
estimations of the variation of Stanton number 
in a turbulent boundary layer on a flat plate 
with a step change of surface temperature at any 
position. 
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R&urn&A partir de l’hypothese que le profil de vitesse sans dimensions dans une couche limite 
turbulente incompressible ob&t au profil universe] bien connu, on montre que I’Cpaisseur de la couche 
limite et les variations de la contrainte de cisaillement et de la diffusivitk turbulente B travers I’epaisseur 
peuvent &tre obtenues g n’importe quel nombre de Reynolds. On montre que les variations r&ultantes, 
exprimtes sous forme non dimensionnelle, dependent seulement et faiblement du nombre de Reynolds. 

En utilisant l’hypoth&se supp1Cmentaire que les diffusivitts turbulentes pour la quantite de mouve- 
ment et la chaleur sont &gales, 1’6quation de l’knergie est rtsolue numeriquement pour obtenir la 
variation du nombre de Stanton avec le nombre de Reynolds pour plusieurs nombres de Prandtl de 
0,Ol; 0,7; 1,0 et 10 et pour diffkrentes positions d’une distribution de tempkrature par Cchelon sur 

la plaque plane. 
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Zusammenfaasung-Mit der Annahme, dass das dimensionslose Geschwindigkeitsprofil in einer 
turbulenten inkompressiblen Grenzschicht dem bekannten Universalprofil entspricht, konnen Crenz- 
schichtdicke, Schubspannung und Anderungen der Austauschfaktoren in der Grenzschicht hei 
beliebigen Reynolds-Zahlen ermittelt werden. Die resultierenden, in dimensionsloser Form wieder- 
gegebenen Anderungen zeigen sich nur sehr wenig abhangig von der Reynolds-Zahl. 

Mit der weiteren Annahme, dass die Austauschfaktoren fur lmpuls und Energie gleich sind, wird 
die Energiegleichung numerisch gel&t, urn die Anderung der Stanton-Zahl mit der Reynolds-Zahl 
fur verschiedene Prandtl-Zahlen zu erhalten. Ergebnisse sind fur die Prandtl-Zahlen O,Ol, 0, I, 0,7, I ,O 
und IO und fur verschiedene Anordnungen einer sprunghaften Temperaturverteilung an einer ebenen 

Platte angegeben. 

AnoTaqrrsI-noIra3aH0, VITO 14cxofi~ 143 ~0IIy~ewwf 0 TOM, 'ITO 6eapa3MepHbSi npof)anb 

CHOpOCTM I3 Typ6yJIeHTHOM HeCHEmMaeMOM IIOrpaHWIHOM CJIOe IIO~WIHHeTCfI I43I3eCTHOMy 

yHHBepCaJIbHOMy IIpO@KiXO, MOHFHO OIIpeReDTb TOJIqllHy IIOrpaHWIHOrO CJIOH II H3MeHeHHe 

IIaIIpRHceHIlSI TpeHI4R II HO3@@iqkIeHTa Typ6yJIeIiTHOfi ~I44lf$y3WI sepe3 IIOrpaHWIHbI& CJIOti 

AJIff XIO6OrO wcna PetiHoJIbzca. IIonysaIorqHecn 11 pe3yJIbTaTe A3MeHf?HIWI, RbI~~a?RCHHbI~ 13 

6e3pa3MepHOti @OpMe, He3HaWlTeJIbHO 3aBMCFIT OT 'IIICJIa PetHOJIbflCa. 

I/ICIIOJIb3yR HOIIOJIHElTPnbHbIe AOIIyUeHIVI, 'ITO 1<03fjj@Iq&IeIITbI Typ6yJIelITHOfi flHfjJfj1y:'"CI 

A,~?R KonuqecTna ~amueunn II TCIIJI~TLI ~~RIILI, ~o*rt~~Io wfc.neIIIIo peIIIHTb ypaBIreInIe afIeprIrn, 

'iTO6bI IIOJIyWTL 3aBMCHMOCTb VHCJ;I CTaHTOfGI. OT 'IIIfXa PetiHOJIb~Ca AJIfi IIeClEOJIb1FIIX 

'IMCAJI IlpaHATJIFI. ~[PMRO~RTCR pe:I,~y.W,TaTbI ;\nfl 'IlIf'f';I IIpaHAT"H o,ol, (),I , 0,7, 1,o II 10,;(.rIJI 
pa:I.rrWII,hIX nO.nOFKeHHti f'TyiIf'lI'I;1TfJl'O ~';lf'IIp'~~f';If'lf~IR Tf'MIlfxl,3TyphI II:1 lI.TIO~tiOir II.ll;If‘TIItil'. 


