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Abstract—From the assumption that the dimensionless velocity profile in a turbulent incompressible
boundary layer obeys the well-known universal profile it is shown that the boundary layer thickness, and
the shear stress and eddy diffusivity variations through the thickness at any Reynolds number, may be
derived. The resulting variations, expressed in dimensionless form, are shown to be only weakly de-
pendent on Reynolds number.

Using the additional assumption that the eddy diffusivities for momentum and heat are equal the

energy equation is solved numerically to obtain the Stanton number variation with Reynolds number for
several Prandtl numbers. Results are given for Prandtl numbers of 0-01, 0-1, 0-7, 1-0 and 10 for a

number of different positions of a step temperature distribution on the flat plate.

NOMENCLATURE
temperature parameter defined by equa-
tion (21);
local coefficient of friction;
constant as defined by equation (20);
specific heat at constant pressure;
local heat-transfer coefficient;
thermal conductivity;
unheated starting length;
constant in Deissler profile;
Prandtl number = Cu/k;
Reynolds number = ux/v;
Reynolds number at distance /;
Reynolds number at distance x;
Spalding function (—S7. Pr.u/ );
Stanton number;
temperature;
temperature at the wall;
temperature in the free stream;
temporal mean velocity in the x-direc-
tion;
free stream velocity;
dimensionless velocity u/v/(7w/p);
temporal mean velocity in the y-direc-
tion;
distance along the plate;
dimensionless distance =
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distance normal to the wall;
dimensionless distance normal to the

wall Jl/ (:w/ p) .

y* at the edge of the velocity boundary
layer where u+ = u};
thermal molecular diffusivity k/pCp;

J— 1 eh.
Y
aBloyt;

step length in R;

step length in y*;

eddy diffusivity for heat;

eddy diffusivity for momentum;
variable used in von Mises transforma-
tion;

dimensionless temperature P
s tw

kinematic viscosity of fluid;

variable used in von Mises transforma-
tion;

fluid density;

shear stress;

shear stress at the wall;

stream function.

INTRODUCTION

THis article describes a solution to the energy
equation when a fluid flows at constant velocity
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parallel to a flat plate under conditions when
there is turbulent incompressible boundary
layer. The plate is considered to be at the stream
temperature for a certain distance from the
leading edge and then at a different temperature
over the remainder.

Owing to the limited knowledge concerning
heat transport in turbulent flow near surfaces,
solutions to this problem involve a high degree
of empiricism. Earlier solutions or empirical
correlations of experimental results were given
by Rubesin [1], Scesa and Sauer [2], Owen
and Ormerod [3], Furber [4], Reynolds, Kays
and Kline [5] but these are all restricted to
cases in which the Prandtl number is unity or
near. More general solutions have appeared
recently following a new approach due to
Spalding [6] who also proposed a new form of
the law of the wall [7] in which a single equation
1s used to describe the dimensionless velocity
variation in the boundary layer. Kestin and
Persen [8], Smith and Shah [9] and Kestin and
Gardner [10] have extended Spalding’s work
and produced solutions to the problem for a
wide range of Prandtl numbers. In these analyses
however, the assumption is made that the thermal
boundary layer is thin compared with the
velocity boundary layer and this is justified only
for certain Prandtl number ranges. If the
Prandtl number be less than unity then it is
possible for the temperature boundary layer to
extend beyond the velocity boundary layer so
that the analysis of [8, 9, 10] are restricted to
Pr > 1.

A comprehensive survey of the state of know-
ledge on this problem is presented by Kestin and
Richardson [11] but it appears that no solution is
yet available for low Prandtl numbers and it is
the object of this work to present a solution
which is applicable to all values of this para-
meter.

MOMENTUM EQUATION
The momentum and continuity equations for
an incompressible turbulent boundary layer
with zero pressure gradient and with the intro-
duction of the eddy diffusivity for momentum
€n may be written
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u cv
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In (1) is included the shear stress definition

T du
p = (V - fm) f’y

Following the procedure suggested by Spalding
[6], the von Mises transformation is used such
that

o
= 2
o
T ox
£ = f(x) and f(x) is chosen equal to x

n == f () and f(4) is chosen equal to .
Then

U

9 =

¢ J ¢ d 0
o W) = e ]S+ [ e g

and similarly for the y derivative.
It is easily shown that
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We introduce the dimensionless variables u* and
y* at this point and obtain

o
We now assume, on the basis of experimental
evidence, that u* is a function of y* only in a
turbulent boundary layer, i.e. that there is

a fixed functional relationship termed the “law
of the wall”’. Thus we may write

dip
ay+

= vt

= yyt
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This may be substituted in (3) to give

8u_ 1 or
ox  v.p.ut oyt

The dimensionless variable R(=uwus;x/v) is now
introduced and us is taken constant.

0 u+ 1 or
“or\u) =y
Expanding this expression and remembering
that (ou*/6R) =0

Hence

3u+
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T rwdyt
Integrating from 0 — y+ gives
:V+

dut T — Tw
_ +y2 "8 o
J ) dR "’ dy Tw
0

Also (du; /dR) is not a function of y* thus
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At y =] yj, T = 0
so that
du/f 1
dk e (4)
j' (u+)2 dy+
1
and
yf (ut)2 dy+
S P (5)
T Ty dy
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Equations (4) and (5) may be used to determine
the Reynolds number —u relation if the law of
the wall be known and the variation of shear
stress at any particular value of the Reynolds
number.

The eddy diffusivity for momentum variation
follows from (5) since

;)_(V+€m)a
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Equation (6) in conjunction with (5) gives the
variation of eddy diffusivity through the boun-
dary layer for any particular value of y (or R).
This is a major step in the analysis since the
assumption will be made that the eddy dif-
fusivity for momentum is equal to that for heat.

Before proceeding to calculations involving
particular forms of the “law of the wall” we
re-form (4) as

dR »~
aur — { (u+)2 dy+t
or
Yart ¥t )
Ry — Ry = | [ [ (u*)?dy*]duf @)
Yt 0

LAWS OF THE WALL

A number of expressions have been proposed
to fit the u* — y* relationship which, from
experiments, appears to have a fixed shape
independent of Reynolds number. These are
well reviewed in [7]. In this analysis two proposed
forms are used and compared, namely, that due
to Deissler [12] and that due to Spalding [7].

(a) Deissler’s law
Two separate expressions were put forward
by Deissler which cover different ranges of y+

dut
+ ——
0 <y <26 a
1
1 -+ 00154 u*y* [1 — exp (—0-0154 u+y+)]
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F1G. 1. The Deissler and Spalding forms of the “law of the wall”.
yr>26 ut= (This calculation and all subsequent were per-

Lo () + 128426 9
0361 (26) + ©)
Figure 1 shows this relationship diagrammatically.

Since the expressions cover different ranges,
the integration necessary must be carried out in
two stages. We shall restrict the solution to
values of Reynolds number where y,” > 26 but
we shall assume that the law is obeyed from the
leading edge position. This cannot be true, of
course, since there is an initial laminar zone
but the previous analyses of this type have shown
this assumption to give good results.

We first consider yj ()2 dyt needed

[

in
equations (4) and (5).

j:[" (u +)2 dy%

+ 26
T@Rdys =] @hedy* +
{} (4] 263

26
Using equation (8) the value of | (u*)2dy*
0

obtained by Runge—Kutta integration is 2250-47.

formed on the Manchester University Atlas
Computer.) The remainder of the integral can
be performed analytically to yield

“ (u*)? dy’ -~ 771606 y+ (lny*)z
133

563636 vt In y+ | 87453611 - - 583962

(10)

We may now determine a R -- y, relation using

). |
Rewriting (7) as
Vagt yo* du
Re— Ri= [ [[@")?dyt] = . dy}
¥at U dy

For values of y, > 26, (du} /dy}) is simply ob-
tained as (1/0-36y, ) from (9) and we obtain
Ry — Ry 96 =21-4335y/ (Iny,/ )

~— 272105y, (Iny}) — 1622-13 In y}-

4+ 51-5032 y,” 4 335-426

Ry: — 96 is the Reynolds number corresponding
to ¥/ = 26 and if the profile is assumed to apply
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from the leading edge this can be computed
using equation (8)

#yyt 26
Rog = [ [ f (w2 dy*]du/
4 i

The value of this integral was computed to be
4759-44, Hence we obtain

Ryt = 2144335 yF (lny Y — 272105 ) Iny}
— 162213 In y;- + 51-5032 p;" 4+ 5094-86
ay
The shear stress variation is obtained by sub-

stituting equation (10) into equation (5) and the
eddy diffusivity variation then follows from
€m

yt T 1
J— 0.36 e ——
vy [ Y5 Tw ys*]
(b) Spalding’s law
Spalding gives a form of the law of the wall
which is a single equation and it is therefore

more convenient for computation. It has the
following form

(12)

yt =ut+4 01108 {exp O4ut)y—1—04d4u+—

©4ut2  (04utp® (04 u*)‘*} 13

20 3T T T4

Figure 1 shows this expression for comparison
with Deissler’s form. By similar arguments to
the above we obtain
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and from the above with (5) and (6) the shear
stress and eddy diffusivity variations may be
computed.

Polynomial fitting to R — y and R — u}
relations

As will be seen, in solving the energy equation
it is necessary to have explicit relation for y;} in
terms of R in the case of Deissler’s form and u/}
in terms of R in the case of Spalding’s form.

Sixth degree polynomial equations were fitted
to equations (11) and (14) in the following
forms.

(a) Deissler’s profile

Inyf =az84-a225 4 azz4 + as 28

+ a5z 4 agz + a2 (15)
(b) Spalding’s profile
Inul =a1z84 a225 +-azz* + as 23

+ asz? ++ aez + az  (16)

where Z = In . R in each case.

Table 1 gives the values of the constants g; to
a7. By re-calculating these relations at known
points the accuracy was found to lie between
—0-032 and 0-0175 per cent for (15) and between
—0-014 and 0-017 per cent for (16).

R — x* relations
Spalding [6] also introduced a new variable x+
and in his analysis showed that solutions to the
energy equation may be obtained using this

J ()R dypt — -(E;E 104 % 0-1108 {WF g 4(0'4 u?) (Oi)zu exp (04 u™) +

{024 S0 047 — (u P04 §u+)4 ~ (0.4): 0(u+)5 ~ (0.4)2 6(u+)6 B (Oi)a}
%}i =14 04 x 01108 {exp ©4u") — 1 — 04 ut — (0'42‘!’+)2 — (0'43‘,_‘+)3}
Ru =( +) +04 x 0-1108 {(“j )2(‘(’)’_‘5)3 Au (0:)3 wh exp (04 uF) +
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Table 1. Polynomial coefficients
Deissler’s law Spalding’s law
a, —2-3358264 x 10-¢ --2-09921034 ~ 107
a, 2:06615471 x 10-¢  2:049576 x [0~
a; ~-7-52824874 = 10-% —8-32415543 - 10-*
a, 0-143990399 1-80627466 - 103
as —1-50727603 —0-223655719
ag 8-78858606 1-60164079
—2-45374632

a,  —19-9065732

variable in such a way that a universal curve is
obtained, irrespective of the unheated starting
length, when plotted against this parameter. His
analysis however included the assumption that
shear stress variations could be neglected and it
would not be expected that his suggestion will
apply when shear stress variation is included.
However, for comparison purposes, the R — x*
relation was calculated.

10"

A. P. HATTON

By definition

Xt e J \/(va)/ P dx

1

dx+ 1 {

dR  uf (7
From the already determined R — u, relations
it is possible to calculate x+ for different values
of the Reynolds number at which the dis-
continuity in temperature occurs for both
Deissler’s and Spalding’s form.

Results of momentum solutions
Before proceeding further it may be helpful if
the results obtained so far are discussed. Figures
2 and 3 show R — u, and R — y [equations

-

———— Spalding

Deissler

[ ETeN

24 26 28 30 32 34
Ul

FiG. 2. Reynolds number—u,* relations (Deissler’s and Spalding’s laws).
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Fi1G. 4. Reynolds number—friction factor relations (Deissler’s and Spalding’s laws).

(11) and (14)] for both relationships. The and Fig. 4 shows the resulting variation of Cr

polynomial approximations are used to generate with R. The Prandtl-Schlichting relation agrees

these shapes in the energy solution. It is easily very closely, tending towards the Deissler curve

shown that for R 104 to 108 and to the Spalding curve for
Cr =2/(u})? R 108,
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FiG. 6. Shear stress variation (Spalding’s law).

Figures 5 and 6 show shear stress variations
derived from equation (5) and the difference
between the two forms of the law of the wall is
extremely small. Figures 7 and 8 show the
corresponding eddy diffusivity variation from
equation {6). These curves are the main object
of the momentum solution since they enable us to
proceed to the energy equation solution if the
assumption e, == e, is made. There is little

A. P. HATTON

variation in these curves with R but in the energy
solution the exact equations were used. It is
worth noting that the maximum e, is some 12
per cent higher for Spalding’s form than for
Deissler’s form. Finally Fig. 9 shows the varia-
tion of x* with R and for both cases the curves
are indistinguishable.

Energy equation solution

The basic energy equation for a turbulent
incompressible boundary layer is written as

w0 8 0 W) g
“ax PP =g @ty U8
By using the same transformation as before we
may arrive at

(-

A .
S OR T dyt | \Pr

and the solution to this equation is the main
object of the work. The boundary conditions
on this equation are

eh) 6)9 ]
z

i 19

== all pt
=0 at y*+ =20

The solution was carried out by a finite
difference method similar to the well-known
Schmidt method. In order to provide for the
steep slope of the ut — y* relation near the wall
it is necessary to use very small steps of Ay*
which implies very small steps of AR. In order to
speed up the calculation to achieve useful
results over a wide range of R, it was carried out
in two parts in the following manner:

(1) For the region close to the temperature
discontinuity, steps of Ayt = 2 were used.
This was carried on for a moderately small
increase of R and then discontinued.

(2) A simplifying assumption was made,
namely, that the heat capacities of the
layers up to y+ =26 for Deissler’s form
and up to y+ =10 for Spalding’s form
are negligible, i.e. in these thin layers a
“steady-state” solution was used. This
permitted much larger steps in Ayt and
hence in AR,
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FiG. 7. Eddy diffusivity for momentum variation (Deissler’s law),

In these parts this assumption implies

};_;13_‘_
Hence
H—C} Ed t= K
ﬁ y E

where y* = 26 or 10 according to the law of the
wall,

Now 8§ =0when y* =0thus K =0
and

Byt
C = §G~~L—Zi~ (Deissler’s form)

J QB) dy*

Q

The value of C along the layer yt = 26 varies
with R. Its initial value may be found at the
position of the jump step since at this point
8 =1 at y+ = 26.

Thus

S T

N f s

The value of C can now be calculated for
subsequent steps in AR from

C= 0y+.=26 . Cy

The values of C; are given in Table 2.

The two solutions were observed to merge
after a short increment in R and this was
assumed to justify the assumption (2).

(20)

e3))
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Table 2. Values of C; required for energy equation solution Finite difference scheme
assummg a steady-state solution near the wall When converted into finite difference form
T e equation (19) becomes
i
Pr Deisslert Spalding} } 2.AR.
’ = 0: =8 [1 ui u] (A B:)z +
001 391940 1001543 Y
0-10 0-450507 1-0188165 AR
070 0099380 0-1560326 i +p) i ud By Bi + /9
1-00 0-077860 0-11246108 A
10-00 0-016886 0-01589504 R JA
e = - B(l 1 [u.; u! (Ay+)2 iﬁl + 181 7'§ }] (22)
1 Steady-state solutlon up to y* = 26. s

I Steady-state solution up to y+ = 10. See Fig. 10(a).
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For assumption (1) this applies to all points ever, in these cases a special treatment of the
including the surface (i = 1). For assumption surface is necessary since 8; is not constant with
(2) the solution is taken out from the layer R at these positions.
y*+ =26 (Deissler) or y* = 10 (Spalding) and Making the assumption 67, — 01.25 == 67 — 6,
these were chosen as the i = 1 position. How- the energy equation becomes
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See Fig. 10(b).

Whether assumption (2) was made or not the
stability limit occurred in the region of maximum
B, so that the step length AR must be limited by

2AR . B

/Gy ey

e
<1

The programme was arranged to determine the
maximum value of this parameter for every step
and it adjusted the next step AR accordingly
with some safety margin. Figure 11 shows the
maximum values of (B;/u; u) (the important
part of the stability number) plotted against
v and it will be seen that low Prandtl numbers
impose a more severe stability criterion on the
numerical process.
The Stanton number is easily shown to be

P o6
A ayﬁ)yo

HATTON

The slope at the wall was obtained from a five
point differentiation formula when assumption
(1) was used.

When assumption (2) was used (¢8/dy*), ' o
becomes C. Pr thus S7 - C/u in this casc.
The Spalding number (¢8/¢y '), 1.0 may also be
obtained.

RESULTS AND CONCLUSIONS

The solution was obtained for five Prandtl
numbers (0-01, 0-1, 0-7, 1 and 10) and for four
positions of the jump step (at y; =46, 1026,
2026, 10026). These positions were chosen
arbitrarily but it was slightly simpler to choose
these rather than R for Deissler’s profile. How-
ever, the corresponding values of R were chosen
for the Spalding profile to make the results com-
parable (these are 1-091 x 104, 9-103 x 105,
2-195 % 108, 1-623 x 107).

The results in the form St versus R are shown
in Figs. 12 and 13. The differences in St between
the two profiles are quite small except in the
region of high Reynolds number where the
values given by Spalding’s form lie higher than
those given by Deissler’s law (at R = 108 and
for Pr -0 0-7 the difference is of the order of
25 per cent). Nevertheless the reasonably close

W

0 2000

N 6000 8000

Y

s

Fi1G. 11. Variation of the maximum stability parameter with ys* and Prandt! number.
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Fia. 12, Reynolds number—Stanton number variation for different positions of the jump step
in temperature for Deissler’s form of the law of the wall.

agreement gives confidence in the accuracy of the
numerical procedures.

The influence of the different starting position
is clearly shown, the Stanton number falling
eventually on to a common curve. For high
Prandtl numbers this convergence is very rapid.
A number of suggested empirical correlations
(see for example [S]) were tried in an attempt to
bring these results on to a single curve for all
Prandtl numbers but none was satisfactory.

The assumption that ep/en =1 has been
shown recently to be incorrect for flow in pipes
and, although there exists no data on this ratio
in turbulent boundary layers, similar effects are
no doubt present. For this reason the results
of Figs. 12 and 13 must be considered doubtful,
particularly at low Prandtl numbers. If reliable
data on the eddy diffusivity ratio becomes avail-

able it would be straightforward to include it
in the general method.

Figure 14 shows the results in the form of
Sp — x*. The important feature here is that for
Pr > 0-7 the curves for different starting lengths
are indistinguishable showing that the influence
of including the variation of shear stress is
negligible. For Prandtl number 0-1 and 0-01
however the effect becomes noticeable and a
single curve does not correlate the effect of
different starting lengths.

Table 3 gives some numerical values of the
Spalding number, together with those calculated
by Kestin and Gardner [10] and Smith and
Shah [9] and it will be seen that these compare
closely. The present values were interpolated to
only four significant figures since the inclusion
of the shear stress variation causes differences
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FiG. 13. Reynolds number—Stanton number variation for different positions of the jump step
in temperature for Spalding’s form of the law of the wall.
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Table 3. Values of the Spalding function obtained in this
analysis by other authors

Present Gardner? Smith
xt analysis  and Kestin and Shah
(Deissler’s  (Spalding’s  (Spalding’s
law) law) law)
For Pr 0-7
102 0-1040 0-10720 0-125829
108 0-0600 0-06248 0-0680106
10¢ 0-0405 0-04428 0-045754
10° 0-0330 0-03407 0-034666
108 0-0290 0-02731 0-027762
For Pr 1
102 0-1250 0-1200 014177
108 0-0700 0-07151 0-07728
10t 0-0505 0-05288 0-054413
10° 0-0420 0-04205 0-042931
108 0-0373 0-03456 0-035321

t Gardnerﬂe;ld Kestin's results are for Pr 0-71 andrl .W

in the x* values with different starting lengths if
the numbers are calculated to higher precision.

In general one may conclude that for Prandtl
numbers greater than 0-7 the results of this
calculation confirm those of previous workers.
For values less than 0-7 where no previous in-
formation is available, it would be easily possible
by cross-plotting from Fig. 12 to obtain good
estimations of the variation of Stanton number
in a turbulent boundary layer on a flat plate
with a step change of surface temperature at any
position.
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Résumé—A partir de I’hypothése que le profil de vitesse sans dimensions dans une couche limite
turbulente incompressible obéit au profil universel bien connu, on montre que I’épaisseur de la couche
limite et les variations de la contrainte de cisaillement et de la diffusivité turbulente & travers ’épaisseur
peuvent étre obtenues & n’importe quel nombre de Reynolds. On montre que les variations résultantes,
exprimées sous forme non dimensionnelle, dépendent seulement et faiblement du nombre de Reynolds.

En utilisant I’hypothése supplémentaire que les diffusivités turbulentes pour la quantité de mouve-
ment et la chaleur sont égales, I’équation de I’énergie est résolue numériquement pour obtenir la
variation du nombre de Stanton avec le nombre de Reynolds pour plusieurs nombres de Prandtl de
0,01; 0,7; 1,0 et 10 et pour différentes positions d’une distribution de température par échelon sur

la plaque plane.
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Zusammenfassung—Mit der Annahme, dass das dimensionslose Geschwindigkeitsprofil in einer
turbulenten inkompressiblen Grenzschicht dem bekannten Universalprofil entspricht, konnen Grenz-
schichtdicke, Schubspannung und Anderungen der Austauschfaktoren in der Grenzschicht bet
beliebigen Reynolds-Zahlen ermittelt werden. Die resultierenden, in dimensionsloser Form wieder-
gegebenen Anderungen zeigen sich nur sehr wenig abhingig von der Reynolds-Zahl.

Mit der weiteren Annahme, dass die Austauschfaktoren fiir Impuls und Energie gleich sind, wird
die Energiegleichung numerisch gelost, um die Anderung der Stanton-Zahl mit der Reynolds-Zahl
fiir verschiedene Prandtl-Zahlen zu erhalten. Ergebnisse sind fiir die Prandtl-Zahlen 0,01, 0,1, 0,7, 1,0
und 10 und fiir verschiedene Anordnungen einer sprunghaften Temperaturverteilung an einer ebenen

Platte angegeben.

Aunoranma—IloxaszaHo, 4To UCXOJQA U3 JOIYUIEHMS O TOM, 4To OespasMepHBIl mpoduib
CKOPOCTH B TYpPOYJEHTHOM HECHUMAaeMOM IIOFPDAHUYHOM CJI0€ MOTYMHAETCH U3BECTHOMY
VHUBEPCAIHHOMY MPOPUIII0, MOKHO ONPENETUTh TONUHY IOTPAHUYHOrO CJIOA U M3MEHeHHe
HAIpPSKeHUs TpeHUA n xosdduimenta TypOyrentaolt guddysnu depes morpaHuuHbIl cmoit
nudA mwboro yucna Peltnombica. Ionydawomueca B pesyIbraTe UBMEHEHHA, BHIPAKEHHHe B
OespasMepHOii fopMe, HEBHAUMTEIBHO B3ABUCAT OT ducya PeltHoapica.

Hcrnonsays aomosHUTe bHEE AOMYINEHUA, 4T0 KOaQuumenTsl TypOyaeHTHON muddysun
LA KOJIMYECTBA ABMKEHUS I TEIIOTH PABHLL, MO0 YHCIEHIO PEHINTE ypaBHeHne YHepruw,
4To0Gbl MONYYMTH 3aBUCUMOCTL 4icaa CTAHTOHA. OT 4ncia PeifHodbIca ANA HECKONBKHX
gucen IIpanaraa. TTpusogared pesyiantarel WA uucesa ITpauaras 0,01, 0,1,0,7,1,0u 10, qus
PABTHUHBIX MOMOMEHHH CTYHERTATOr0 PACIIPORRTCHITA TeMITePATYPEL HA TIIOCKON HIacTiHe.



